Salzpflanzen (Halophyten)
Auf dem Bild:
Ein typischer Vertreter der Salzpflanzen: Der Queller (Salicornia sp.) auf der Insel Gressholmen (Norwegen)
Auf dem Bild:
Mangrove (Rhizophora sp.) in Queensland, Australien
Photo: Muriel Gottrop
Salzpflanzen
Salzpflanzen oder Halophyten bilden eine ökologisch abzugrenzende Gruppe unter den Höheren Pflanzen, die an erhöhte Gehalte von leicht löslichen Salzen an ihrem Standort angepasst sind und sich unter diesen Bedingungen fortpflanzen können.
Salzpflanzen besiedeln salzreiche Standorte weitgehend breitenunabhängig in trockenen bis überfluteten Lebensräumen, häufig in Meeresnähe und an Salzseen. Die noch wenig erforschten Mechanismen, mit deren Hilfe die Pflanzen sich an extreme Umweltbedingungen anpassen und photosynthetisch aktiv bleiben können, sind sehr vielfältig. Einige Salzpflanzen (die obligaten Halophyten) werden durch moderate Salzgehalte in ihrem Wachstum gefördert, andere Salzpflanzen benötigen kein Salz für ihre Lebenstätigkeit. Sie gedeihen wesentlich besser auf salzfreien Böden, nur sind sie dort der Konkurrenz anderer Pflanzen unterlegen.
Fast alle Salzpflanzen sind, wenn auch teilweise xerophytisch austrocknungsresistent, zur ständigen Salzverdünnung auf eine lokale Wasserstelle angewiesen.
Salzwiesen & Salzsümpfe
Salzwiesen, sind vom Meer periodisch oder unregelmäßig überflutete Bestände krautiger Pflanzen (Salzpflanzenvegetation).
Salzwiesen oder Salzsümpfe finden sich weltweit, in der gemäßigten Klimazone an strömungsarmen Flachküsten im Bereich der mittleren Hochwasserlinien, unter tropischen Klimabedingungen bei entsprechenden geomorphologischen Voraussetzungen als Mangrovenwälder. Die artenreichen Lebensgemeinschaften aus Salzpflanzen (Halophyten) und den in Salzwiesen lebenden Tieren sind an die Überflutung und hohe Salzgehalte des Meereswassers und des Bodens in höchstem Maße angepasst.
Alle natürlichen und naturnahen Habitate Europas sind durch die Rarität einzelner Salzpflanzenarten geschützt. Diese natürlichen, nicht durch den Menschen geschaffenen oder verursachten Lebensräume heißen Primäre Standorte. Sie weisen meist eine große Populationsdichte auf. Die Artenvielfalt ist aufgrund des extremen Standortes oft relativ gering.
Auf dem Bild:
Küstennahe Salzwiesen in Norddeutschland mit einer hochspezialisierten Vegetation von Salzpflanzen
Auf dem Bild:
Queller als natürlicher Sandfang in den Scharhörner Salzwiesen bei Ostwind.
Auf der Karte:
Verbreitung wichtiger Salzvegetation.
Grün: Salzwiesen
Orange: Mangrovenwälder
Ökosystem Mangrove
Der Mangrovenwald wird von salztoleranten Mangrovenbäumen im Gezeitenbereich, vorwiegend tropischer Küsten mit Wassertemperaturen über 20 °C gebildet. Weltweit gibt es etwa 15 Millionen Hektar (150.000 km²)
Mangrovenwälder bestehen aus Bäumen und Sträuchern verschiedener Pflanzenfamilien mit insgesamt fast 70 Arten, die sich an die Lebensbedingungen der Meeresküsten und brackigen Flussmündungen angepasst haben.
Ihre größte Ausdehnung erreichen Mangrovenwälder im Bereich der Ästuare großer Flüsse in regenreichen und warmen Regionen.
Auf dem Bild:
Mangrovenwald beziehungsweise Mangrovensumpf
Das Mangrovenbiom, oft Mangrovenwald oder Mangal genannt, ist ein ausgeprägter salzhaltiger Wald- oder Buschlandlebensraum, der durch Ablagerungsküstenumgebungen gekennzeichnet ist, in denen sich feine Sedimente (oft mit hohem organischen Anteil) in Gebieten ansammeln, die vor energiereichen Wellen geschützt sind. Die Salzbedingungen, die von verschiedenen Mangrovenarten toleriert werden, reichen von Brackwasser über reines Meerwasser (3 bis 4 % Salzgehalt) bis hin zu Wasser, das durch Verdunstung auf mehr als das Doppelte des Salzgehalts von Meerwasser im Meer konzentriert wird (bis zu 9 % Salzgehalt).
Gefährdung und Schutz
Seit 2010 werden Fernerkundungstechnologien und globale Daten eingesetzt, um Gebiete, Bedingungen und Entwaldungsraten von Mangroven auf der ganzen Welt zu bewerten. Im Jahr 2018 veröffentlichte die Global Mangrove Watch Initiative eine neue globale Basislinie, die die gesamte Mangrovenwaldfläche der Welt im Jahr 2010 auf 137.600 km2 schätzt, die sich über 118 Länder und Gebiete erstreckt. Eine Studie aus dem Jahr 2022 über Verluste und Gewinne von Gezeitenfeuchtgebieten schätzt einen Nettorückgang der globalen Mangrovenausdehnung um 3.700 km2 von 1999 bis 2019. Der Verlust von Mangroven geht aufgrund menschlicher Aktivitäten weiter. Die weltweite jährliche Entwaldungsrate wird auf 0,16 % geschätzt, die Raten pro Land belaufen sich auf bis zu 0,70 %. Auch die Verschlechterung der Qualität der verbleibenden Mangroven ist ein wichtiges Anliegen.
Es gibt aus mehreren Gründen Interesse an der Wiederherstellung von Mangroven. Mangroven unterstützen nachhaltige Küsten- und Meeresökosysteme. Sie schützen umliegende Gebiete vor Tsunamis und extremen Wetterereignissen. Mangrovenwälder sind auch bei der Kohlenstoffbindung und -speicherung wirksam. Der Erfolg der Mangroven-Restaurierung kann stark von der Zusammenarbeit mit lokalen Interessengruppen und von einer sorgfältigen Bewertung abhängen, um sicherzustellen, dass die Wachstumsbedingungen für die ausgewählten Arten geeignet sind.
Auf dem Bild:
Mangrovensumpf, ein typisches Mangroven-Ökusystem
Der Internationale Tag zur Erhaltung des Mangroven-Ökosystems wird jedes Jahr am 26. Juli gefeiert.
Mangroven
Mangroven sind Sträuche oder Bäume, die hauptsächlich in Salz- oder Brackwasser an der Küste wachsen. Mangroven kommen in einem äquatorialen Klima, typischerweise entlang von Küsten und Gezeitenflüssen der Tropen bis hin zu den Subtropen vor. Sie verfügen über spezielle Anpassungen, um zusätzlichen Sauerstoff aufzunehmen und Salz zu entfernen, wodurch sie Bedingungen tolerieren können, die die meisten Pflanzen töten würden. Der Begriff wird auch für tropische Küstenvegetation verwendet, die aus solchen salztoleranten Arten besteht. Mangroven sind taxonomisch vielfältig, was auf die konvergente Entwicklung mehrerer Pflanzenfamilien zurückzuführen ist. Sie kommen weltweit, hauptsächlich in den Tropen und Subtropen, seltener sogar in einigen gemäßigten Küstengebieten vor, hauptsächlich zwischen den Breitengraden 30° N und 30° S, wobei das größte Mangrovengebiet innerhalb von 5° des Äquators liegt. Mangrovenpflanzenfamilien tauchten erstmals in der späten Kreidezeit bis zum Paläozän auf und verbreiteten sich teilweise aufgrund der Bewegung tektonischer Platten weit. Die ältesten bekannten Fossilien der Mangrovenpalme stammen aus der Zeit vor 75 Millionen Jahren.
Auf dem Bild:
Mangroven in Kannur (Indien)
Mangroven sind salztolerante Bäume und Sträucher, die an das Leben unter rauen Küstenbedingungen angepasst sind. Sie verfügen über ein komplexes Salzfiltersystem und ein komplexes Wurzelsystem, um dem Eintauchen in Salzwasser und Wellenbewegungen standzuhalten. Sie sind an die sauerstoffarmen Bedingungen von durchnässtem Schlamm angepasst und gedeihen in der oberen Hälfte der Gezeitenzone.
Ein keimender Mangaroven-Samen
(Qatif, Saudi-Arabien)
Viviparie bei der Roten Mangrove (Rhizophora mangle)
Mangrovenwurzeln bei Ebbe auf den Philippinen
Pneumatophore Luftwurzeln der Grauen Mangrove (Avicennia marina)
Lebensraum Salzwiese
In Uferbereichen der gemäßigten Klimazone finden sich an Flachküsten im Bereich der mittleren Hochwasserlinie schlickige Marschgebiete, die bei höheren Wasserständen überflutet werden. Solche salzigen Bereiche, Salzwiesen genannt, sind Lebensraum vieler Blütenpflanzen, die an diese extremen Verhältnisse angepasst sind. Die Besiedlung der Salzwiesen erfolgt in Abhängigkeit von der Höhe über dem mittleren Hochwasser und somit vom Salzgehalt und wird nach der Vegetation in verschiedene Zonen unterteilt.
In Deutschland sind die Salzwiesen großteils geschützt, etwa im Nationalpark Niedersächsisches Wattenmeer.
Salzwiesen bei Chidham in der Nähe von Chichester (England)
Arthrocnemum macrostachyum in einer Salzwiese
Salicornia virginica
Salzmiere (Honckenya peploides)
Weitere Standorte
In Mitteleuropa sind Salzstandorte im Binnenland recht selten. Bekannte Beispiele sind die Salzwiesen um das Kyffhäuser Gebirge in Thüringen, die Pannlake im Naturschutzgebiet Hollerland in Bremen, die Luchwiesen in Brandenburg oder die Salzlacken im Seewinkel östlich des Neusiedler Sees. Für das Auftreten von Salzstandorten abseits der Meeresküsten sind zwei Faktoren wichtig: Im Untergrund befinden sich Salzlagerstätten und zumindest in manchen Jahreszeiten ist die Verdunstung höher als der Niederschlag, so dass die Salze an die Bodenoberfläche gelangen und nicht ausgewaschen werden. Gerade an solchen Standorten treten nicht nur Natriumchlorid auf, sondern auch Magnesium, Carbonate und Sulfate.
Bild oben:
Lacke bei Podersdorf mit Halophytenvegetation
(Nationalpark Neusiedler See – Seewinkel)
Bild oben:
Das Pannonien-Glasschmalz (Salicornia prostrata) verträgt höchste Salzkonzentrationen
Daneben finden sich Halophyten seltener im Gebirge, wobei im Fels eingeschlossene Salze oder hoch gelegene Salzquellen und -seen Grundlage für dieses etwas ungewöhnliche Habitat sind. Tagsüber bietet der oft steinige Untergrund eine Wärmeabsorption, so dass die Pflanzen in der Nacht nicht durch Kältetod sterben. Auch können an Steilküsten typische salztolerante Felsbesiedler wie Meerfenchel, Meersenf, Meer-Rübe und Strandflieder auftreten. Sie sind fähig, ihre Wurzeln tief im Gestein zu verankern, um bei Sturmflut nicht abgespült zu werden.
Große Flächen nehmen Salzpflanzen in den trockenen (ariden) Gebieten der Erde ein, die zumindest so viel Niederschlag erhalten, dass sich mit dem aufgrund der Verdunstung aufsteigenden Bodenwasser die Salze an der Oberfläche konzentrieren können. Die Salzpflanzen trockener Standorte werden Xerohalophyten genannt. Im Folgenden sollen einige Gebiete mit xerophytischer Vegetation exemplarisch vorgestellt werden.
Auf dem Bild:
Europäischer Meersenf
(Cakile maritima)
Sekundäre Standorte
Neben den primären Standorten gibt es auf Bergwerks- und Industriegelände sowie entlang von Verkehrswegen sekundäre, anthropogene Salzstellen, also solche, die erst durch Einwirkung des Menschen entstanden sind. Die Pflanzenwelt solcher Habitate gehört zur Ruderalvegetation, da es sich um krautige Arten handelt, die zudem nicht land- oder forstwirtschaftlich genutzt werden. Wichtigster Standortsfaktor ist der erhöhte Salzgehalt, der durch verschiedene Handlungen, wie beispielsweise das Salzen der Straßen im Winter zustande kommt; mechanische Störungen spielen erst in zweiter Linie eine Rolle. Sekundäre Lebensräume stellen Inselhabitate für Halophyten und halobionte Tiere dar, so dass sie auch für die biogeographische Forschung von Bedeutung sind. Als besonders interessant hat sich das Studium der Besiedlung von Abraum- und Rückstandshalden der Kali-Industrie erwiesen, die man als „Inselberge“ der Kulturlandschaft einstufte. Dort fand man bislang im Binnenland seltene oder nicht beobachtete Arten, die vorher nur von primären Standorten bekannt waren. Bezogen auf die Populationsgrößen vieler bedrohter Halophyten fungieren die Sekundärstandorte inzwischen als wichtige Refugien.
Einteilung nach Abhängigkeit vom Salz
Obligate Halophyten:
Die obligaten Halophyten, auch Eu-Halophyten genannt, sind an ihre salzige Umgebung gebunden. Ohne eine bestimmte Konzentration von Salz als Lebensgrundlage wäre das Gedeihen und Keimen dieser Pflanzen nicht möglich, da sie sich an Extrembedingungen dieses Umweltfaktors weitgehend angepasst haben. Der Toleranzbereich der obligaten Halophyten gegenüber Salz ist dementsprechend sehr groß, so dass diese sogar bei ständiger Überflutung mit Meerwasser bestehen können. Die bekanntesten heimischen Gattungen sind Queller (Salicornia), Binsen (Juncus), Salzmelden (Suaeda) und Schlickgräser (Spartina).
Arthrocnemum macrostachyum
Europäischer Queller
(Salicornia europaea)
Salicornia depressa
Salicornia rubra
Salz-Schlickgras (Spartina anglica)
im Gezeitenbereich des Wattenmeeres
Salzmelde (Suaeda australis)
Groß-Salzmelde
(Suaeda pannonica)
Fakultative Halophyten:
Der Schmalblättrige Strandflieder (Limonium angustifolium) zählt zu den fakultativen Halophyten
Die fakultativen Halophyten (fakultativ = wahlweise) haben die Fähigkeit, an Salzstandorten zu wachsen, sind aber nicht an diese gebunden. Vertreter, wie das Gänsefingerkraut (Potentilla anserina), die Strand-Aster (Aster tripolium), der Strand-Wegerich (Plantago maritima) und der Strand-Beifuß (Artemisia maritima) können durchaus auch in maritimen Gebieten auftreten. Ihr Optimum an Lebensfunktionen erreichen sie jedoch nur auf Böden, die überwiegend salzfrei sind oder nur einen leichten Salzgehalt aufweisen. Da sie in diesen Gebieten zunehmend auf die Konkurrenz anderer Pflanzen stoßen, sind diese Salzpflanzen häufig gegenüber den dort anzutreffenden Süßwasserpflanzen im Nachteil. Diese sind besser an ihr Milieu angepasst und vermehren sich schneller. Fakultative Halophyten weisen einen größer eingeschränkten Toleranzbereich gegenüber dem Salzgehalt des Bodens auf, als obligate Halophyten.
Der Schmalblättrige Strandflieder (Limonium angustifolium) zählt zu den fakultativen Halophyten
Strand-Wegerich
(Plantago maritima)
Strand-Aster
(Tripolium pannonicum)
Indifferente Halophyten:
So genannte standortindifferente Halophyten bilden eine Übergangsform zu den Süßwasserpflanzen und sind meist nur in salzfreien Gebieten zu finden. Ihr Toleranzbereich ist relativ gering, sie kommen aber noch mit Salzböden zurecht, die eine geringere Konzentration aufweisen. In diesen Fällen verändert sich der Habitus der entsprechenden Pflanze auf unterschiedlichste Weise und weicht vom Grunderscheinungsbild ab. Vertreter dieser Gruppe sind: Rotschwingel (Festuca rubra litoralis), Weißes Straußgras (Agrostis stolonifera), Kröten-Binse (Juncus bufonius), Kriechender Hahnenfuß (Ranunculus repens) und Mauerpfeffer (Sedum).
https://commons.wikimedia.org/wiki/File:Agrostis_stolonifera_sl23.jpg
https://commons.wikimedia.org/wiki/File:Juncus_bufonius.jpeg
https://commons.wikimedia.org/wiki/File:Mauerpfeffer2.jpg
Weißes Straußgras
(Agrostis stolonifera)
Kröten-Binse
(Juncus bufonius)
Scharfer Mauerpfeffer
(Sedum acre)
Einteilung nach Art der Einwirkung des Salzes
Salz kann auf verschiedensten Wegen auf die Pflanze einwirken, wonach sich Halophyten grundlegend als lufthalin (aerohalin), wasserhalin (hydrohalin) oder terrestrisch halin beschreiben lassen. Die beiden zuletzt genannten Kategorien greifen dabei ineinander, weshalb oft auch die zusammenfassende Bezeichnung hydroterrestrisch halin verwendet wird.
Lufthaline:
Brechende Wellen und Gischt auf den Ozeanen führen durch einen Dispergierungprozess zur Freisetzung kleiner Tröpfchen in der Luft. Wesentliche Anteile davon werden durch die Turbulenz der marinen Grenzschicht nach oben transportiert und können teilweise trocknen. Das durch solche Brandungszerstäubung entstehende Aerosol, welches zusammenfassend als Seesalz-Aerosol bezeichnet wird, wirkt sich infolge hoher Salzluftkonzentration auf Pflanzen in zum Meer nahe gelegenen und entfernten Gebieten aus. Viele lufthaline Arten sind zugleich wasserhalin, so dass sich zwischen beiden Kategorien eine engere Verbindung ergibt. Die im eigentlichen Sinne rein aerohalinen Arten leben als Übergang vom maritimen zum terrestrischen Bereich in abgelegener Umgebung zum Meer und nehmen Salz fast ausschließlich über die Blattoberfläche auf. So kann der Salzgehalt der Blätter an der Luvseite bis zu zehn Mal höher sein als bei Blättern derselben Pflanze im Windschatten. Der Gelbe Hornmohn (Glaucium flavum) ist etwa gegen Salzstaub und Spritzwasser unempfindlich, verträgt jedoch kein Salz im Boden.
In der Nähe von Verdunstungsbecken, also bestimmten Binnensalzseen, die regelmäßig in Dürreperioden austrocknen und eine Salzwüste hinterlassen (Desertifikation), finden sich ebenfalls zahlreiche Salzpflanzenarten. Das in der Luft vorhandene Salz ist auf solche Verdunstungsprozesse des Salzwassers zurückzuführen und wird von der dort lebenden Pflanzenwelt aus dem aeroben Umfeld aufgenommen.
Auf dem Bild:
Gischt von Wellen an der Costa Blanca (Calp, Spanien)
Wasserhaline:
Die maritimen Arten leben sowohl in näherer Umgebung von Salz- als auch von Brackwasser und finden sich von der Gezeitenzone über Flussmündungen hinein ins Landesinnere an Binnenlandsalzgewässern. Hydrohaline Pflanzen sind all jene Arten, die entweder vollkommen oder halbaquatil sind, also ihren Lebensmittelpunkt im oder in der Nähe vom Wasser haben. Ist der Boden trocken und sandig ausgebildet, im engeren Sinne an Stränden und Dünen, haben sich die dortigen arenicolen Halophyten meist mit einem weiteren, tieferen Wurzelsystem an ihr Umfeld angepasst. Auf schlickigem, oft überflutetem Untergrund, der eine direkte Wasseraufnahme gewährleistet, kommen hingegen eher Pflanzen mit kleineren, aber auch kräftigeren, nicht wegschwemmbaren Wurzeln auf. Einige geschlossene Pflanzenformationen haben sich offensichtlich auf verdünntes Meerwasser der Flussdeltas und auf Flussmündungen als Lebensraum spezialisiert, wohingegen andere in einer ausgeprägten Sandlückenflora an salzkonzentrierten Seen und Binnenmeeren wie dem Toten Meer leben. Dabei variiert der Salzgehalt thalassohaliner Standorte über einen weiten Bereich und kann dem des Meerwassers (3,5 %) bis zu dem Salzgehalt einer gesättigten Natriumchloridlösung (30 %) entsprechen. Die Übergangsformen zu den terrestrischen und aerohalinen Salzpflanzen bilden weiter vom Salzwasser abgelegene Vielfältigkeitsbereiche, welche sich oberhalb des bei Flut gewöhnlich erreichten Wasserspiegels auf normaler Erde oder Felsgeröll (vorzugsweise Sedum-Arten) angesiedelt haben und normalerweise nur von der salzigen Gischt erreicht werden.
Auf dem Bild:
Einzigartiges Salzwiesengebiet, das sich durch Ebbe und Flut ständig verändert. (Noarderleech, Friesland)
Terrestrische Haline:
Als terrestrische Haline bezeichnet man alle landlebenden Arten, die sich auf Binnensalzstellen spezialisiert haben. Sie nehmen Salz ausschließlich über den Boden auf. Zu den nicht am Strand vorkommenden Salzpflanzen gehören beispielsweise der Felsen-Beifuß (Artemisia rupestris), Schlitzblättriger Beifuß (Artemisia laciniata) oder das Land-Reitgras (Calamagrostis epigeios). Auch in Wüsten- und Steppenregionen auftretende Gewächse, wie Arten der Gattung Atriplex sind als solche vom Wasser abgelegene Formen aufzufassen, welche sich bevorzugt unter standortindifferenten Halophyten auffinden lassen.
Einteilung nach dem Salzgehalt des Bodens
Die Einordnung nach dem Salzgehalt im Boden wird durch Angaben in Promille (1 ‰ entspricht 1 g/L) stufenweise eingeschätzt. Da viele terrestrische Halophyten zugleich wasserhalin sind, trifft das Schema der Einteilung für beide Kategorien und gleichwohl auch in der Geologie und Bodenkunde zu.
- Oligohaline
Pflanzen vertragen eine Salzkonzentration von 0,5 bis 5 ‰ und haben einen sehr geringen Toleranzbereich in Bezug auf Salz. Die meisten maritimen und terrestrischen Arten zählen in diese Ordnung. - Mesohaline
nennt man Pflanzen, die sich in Bereichen mit 5 bis 18 ‰ Salzgehalt befinden. Gemeinschaften dieser ökologischen Gruppe findet man in der Nähe von Salzsümpfen oder Seen mittlerer Salzigkeit. - Polyhaline
weisen einen Salzgehalt von bis zu 30 ‰ in ihrer Umgebung auf. Hierbei handelt es sich um Pflanzen, die an außergewöhnlich salzhaltigen Seen leben.
Bild oben:
Die Meerstrand-Binse (Juncus maritimus) kommt an den Küsten Westeuropas und des Mittelmeerraumes östlich bis Aserbaidschan, auf feuchten Salztonböden in Strandwiesen vor. In Mitteleuropa kommt sie auf den ostfriesischen Inseln, an der Ostseeküste, im Burgenland im Seewinkel und in Istrien vor.
Anpassungsstrategien
Salzpflanzen haben vielfältige Strategien entwickelt, um bei Salzbelastung wachsen zu können. Die „Fähigkeit einer Pflanze, ein Überangebot an Salzen in ihrem Substrat durch Salzregulation vom Protoplasma fernzuhalten oder eine erhöhte osmotische und ionentoxische Salzbelastung zu ertragen“, wird als Salzresistenz bezeichnet. Resistenz ist somit der Oberbegriff, die beiden Unterbegriffe sind die Regulation und die Toleranz.
Salzresistenz äußert sich in morphologischen und physiologischen Anpassungen, die sich meist gegenseitig bedingen.
Auf dem Bild:
Ausgeschiedenes Salz in Form von Salzkristallen auf einem Blatt der Mangrove (Avicennia marina)
Salzregulation
Abschirmung:
Die Abschirmung (engl. exclusion) ist die Strategie, Salzionen gar nicht in die Pflanze aufzunehmen bzw. nicht in empfindliches (junges, wachsendes) Gewebe gelangen zu lassen.
Abschirmung in der Wurzel:
Durch das Ausschlussprinzip, auch Salzfiltration genannt, wird bereits die Aufnahme von Salzionen über die Wurzel bedingt eingeschränkt. Wie bei allen Pflanzen wird die unkontrollierte apoplastische Wasseraufnahme der Mangrovengewächse durch den Casparischen Streifen verhindert. Die Ionenkanäle der Zellmembran sind jedoch wesentlich selektiver als die von Nicht-Halophyten, so dass fast kein Natrium und Chlorid, die wichtigen Ionen wie Kalium jedoch sehr wohl aufgenommen werden. Der Xylemsaft innerhalb der Wurzel ist im Gegensatz zum Boden salzarm. Beim im Randbereich von Mangrovenwäldern wachsenden Strauch Conocarpus erectus (Flügelsamengewächse) wurden im Xylemsaft der Zweige nur 17,6 mol m−3 Chlorid und 7,5 mol m−3 Natrium gemessen (im Vergleich zu 465 mol m−3 Chlorid und 362 mol m−3 Natrium im Meerwasser).
Abschirmung im Spross:
Bei manchen Arten, zum Beispiel beim Schmetterlingsblütler Prosopis fracta, ein Strauch arider Salzstandorte, werden besonders die Natrium-Ionen in basalen Pflanzenteilen wie Wurzel und Stamm zurückgehalten (sodium retention). Ähnliches gilt auch für das Andelgras (Puccinellia peisonis). Beim Gras Diplechna fusca werden Natrium- und Chlorid-Ionen in der Blattscheide zurückgehalten. Bei den Mangroven, bei denen sich aufgrund des Stammvolumens diese Strategie anbieten würde, konnte kein derartiger Mechanismus beobachtet werden.
Durch das Zurückhalten von Salzionen in basalen und auch älteren Pflanzenteilen wird der Ionengehalt in den jungen Sprossabschnitten und auch in den physiologisch aktiven Blättern niedrig gehalten.
Elimination:
Als Elimination wird die Strategie bezeichnet, bereits in die Pflanze aufgenommene Salzionen wieder auszuscheiden. Es gibt hier die unterschiedlichsten Strategien. Die Ausscheidungsmechanismen bilden eine besonders wirksame, aber auch Energie verbrauchende Methode, aufgenommenes Salz direkt auszuscheiden und damit den Salzwert der Zelle nahezu konstant zu halten.
Absalzhaare:
Absalzhaare oder auch Blasenhaare treten besonders häufig bei Gänsefußgewächsen (Chenopodiaceae) auf. Dies sind spezialisierte Haare (Trichome) auf der Blattoberfläche, in die aktiv Ionen transportiert werden. Die Haare sterben ab, platzen, die Ionen werden abgewaschen und somit aus der Pflanze entfernt. Blasenhaare sind meist zweizellig, sie bestehen aus einer nahezu vollständig mit dem Zellsaftraum der Vakuole ausgefüllten Blasenzelle, welche einer vesikel-, plasma-, mitochondrien- sowie chloroplastenreichen Stielzelle aufsitzt. Letztere verbindet durch zahlreiche Plasmodesmen die Blasenzelle mit dem unterhalb anliegenden Blattgewebe und nimmt gleichfalls eine sehr stoffwechselphysiologisch aktive Position ein, um den Natriumchloridtransport mit der darauf folgenden Akkumulation zu ermöglichen. Unter Energieverbrauch (ATP) werden gelöste Salze über die Stielzelle in die Vakuole der Blasenzelle transportiert und dort angesammelt. An einer Sollbruchstelle am Schaft knickt das Haar ab, wenn es genug Salz aufgenommen hat, und fällt zu Boden. Versagt dieser Mechanismus, platzt das Haar oder wird mit Ab- und Auswaschen durch den Niederschlag entfernt.
Manche Arten, wie Atriplex halimus oder die Portulak-Keilmelde (Halimione portulacoides) können mehr als 80 % der von ihnen aufgenommenen Ionen über die Blasenhaare ausscheiden.
Absalzdrüsen:
Viele Halophyten scheiden Salze durch spezielle Drüsen auf der Blattoberfläche aus. Im Gegensatz zur Exkretion und der Sekretion spricht man bei der Salzausscheidung von Rekretion, d. h. die Stoffe werden von der Pflanze in der Form ausgeschieden, wie sie aufgenommen wurden und sie erfüllen nach dem Ausscheiden keinen speziellen Zweck mehr.
Auf dem Bild:
Die Strand-Grasnelke (Ameria maritima) verfügt über Absalzdrüsen
Die Salzdrüsen einzelner Halophyten zeigen sehr unterschiedliche Bau- und Funktionsmerkmale auf. Eine der einfachsten Formen findet sich bei der Gattung der Schlickgräser (Spartina). In deren Blättern und Halmen bestehen sie meist nur aus einer Poren durchsetzten Cuticula und einem Subcuticularraum mit darunter liegenden Basis- und Klappzellen.
Beim Gewöhnlichen Strandflieder (Limonium vulgare), der einen sehr komplexen Aufbau der Salzdrüsen aufweist, vermutet man die Exozytose als zusätzliche Möglichkeit des Stofftransportes. So fusionieren die angesammelten Salzvesikel (Exosomen) mit der Membran der Rekretionszellen und treten durch Poren an die Oberfläche. Auf der Blattaußenseite können sich dadurch sichtbare Salzkristalle bilden. Ebenfalls verschieden ist die Anzahl und Verteilung der Salzdrüsen im Blatt. Während beim Strandflieder bis zu 3000 Drüsen pro cm² gezählt wurden, zeigt die Strand-Grasnelke (Armeria maritima) nur 590 Drüsen und das Milchkraut (Glaux maritima) etwa 800 Drüsen pro cm² auf.
Ausgeschieden werden spezifisch Natrium- und Chlorid-Ionen, während Kalium in der Pflanze zurückbehalten wird, sodass das Kalium/Natrium-Verhältnis in der Pflanze hoch bleibt. Die durch die Drüsen ausgeschiedene Salzmenge kann sehr hohe Werte erreichen, so kann Diplachne fusca sogar die fünffache Menge der in der gleichen Zeit aufgenommenen Salzmenge ausscheiden, das Gras Spartina alternifolia immerhin rund die Hälfte. Die Mangrove Aegialitis annulata scheidet in jungen Blättern in 12 Stunden rund 38 % der im Blatt vorhandenen Salzmenge aus. Der Energie-Bedarf für die Salzausscheidung ist erheblich. Bei Tamarix werden pro mol ausgeschiedenes Natriumchlorid rund 20 bis 24 mol ATP benötigt.
Auf dem Bild:
Salzdrüsen von Limonium vulgare, Blattquerschnitt
Abwurf von Pflanzenteilen:
Rosettenpflanzen reichern Salzionen bis zum Erreichen der Toxizitätsgrenze in Geweben der ältesten Blätter an. Bevor diese absterben, entzieht die Pflanze ihnen noch die wieder verwertbaren Nährstoffe (Stickstoff) und entsorgt sie dann mit dem gespeicherten Salz durch Abwurf. Die darauf folgenden jüngeren Blätter übernehmen die Funktion. Bekannte mitteleuropäische Vertreter sind Strandwegerich (Plantago maritima), Strand-Dreizack (Triglochin maritima) und die Strand-Aster (Aster tripolium).
Auf dem Bild:
Strandwegerich (Plantago maritima)
Retranslokation:
Unter Retranslokation versteht man den Rücktransport von Ionen aus den Blättern über das Phloem zurück in die Wurzeln, wo die Ionen wieder ins umgebende Medium abgegeben werden. Nachgewiesen wurde dieser Mechanismus etwa für das Süßgras Pappophorum pappiferum, das binnen 48 Stunden rund 35 % des im Spross vorhandenen Natriums über die Wurzeln ausscheiden kann. Auch für Mangroven wird dieser Mechanismus diskutiert, da die Blätter vieler Arten bei gleich bleibendem Salzgehalt bis zu 18 Monate alt werden.
Sukkulenz:
Sukkulenz ist eine Strategie zur Verdünnung des aufgenommenen Salzes, sie tritt vor allem bei Chlorid-Halophyten auf. Dabei wird mit den Ionen auch Wasser aufgenommen und in den großen Vakuolen gespeichert. Dadurch wird eine zu hohe intrazelluläre Salzkonzentration verhindert. Je nach dem sukkulenten Organ unterscheidet man Blattsukkulenten wie Soden (Suaeda), Schuppenmieren (Spergularia) und einige Mangrovenarten, und Stammsukkulente wie den Queller. Besonders häufig tritt Sukkulenz bei den Gänsefußgewächsen auf. Bei den blattsukkulenten Mangroven Rhizophora mangle (Rhizophoragewächse), Laguncularia racemosa und Conocarpus erectus (beide Flügelsamengewächse) gibt es eine hohe Korrelation zwischen Chloridgehalt bezogen auf die Blattoberfläche und dem Wassergehalt bezogen auf die Blattoberfläche; diese Korrelation tritt nicht auf bei salzausscheidenden Mangroven.
Auf dem Bild:
Der Queller (Salicornia europaea) ist ein typischer, sukkulenter Halophyt.
Meist sind die Sukkulenten durch fleischige, aufgequollene Spross- und Wurzelteile gekennzeichnet, die durch mehrschichtige Speichergewebe zu Wasserspeicherorganen umgebildet wurden. Die Blätter, in denen Anzahl und Größe der Parenchymzellen erhöht sind, haben eine reduzierte Oberfläche und sind oft in den Stiel verjüngt, um die Transpiration einzuschränken. Alle Verdünnungsmechanismen bewirken mit der Ansammlung von Wasser eine Volumenvergrößerung des Lösungsraums und eine Verringerung der Salzionenkonzentration.
Auf dem Bild:
Im Herbst rot gefärbter Queller.
Die Alternative zur Speicherung in der Zellvakuole bildet die Verteilung des überschüssigen Salzes im gesamten Pflanzenkörper, wodurch zunächst eine Verringerung der Salzkonzentration bewirkt wird. Beim einjährigen Queller oder der Salz-Binse ist der Vegetationszyklus bereits beendet, wenn die Salzkonzentration letal wird. Die salzüberlastete Pflanze färbt sich braun bis rot – ein generelles Stresssymptom – und stirbt schließlich ab.
Intrazelluläre Kompartimentierung:
Die unterschiedliche Verteilung der aufgenommenen Ionen auf verschiedene Zellbestandteile (Zellkompartimente) ist als Anpassungsmechanismus zwischen Regulation und Toleranz angesiedelt. Auch Pflanzen, die Salze speichern, können im Cytoplasma nicht beliebige Ionenkonzentrationen ertragen, da auch die meisten ihrer Enzyme salzempfindlich sind. Daher wird die Hauptmenge der Salzionen in der Vakuole eingeschlossen. Besonders auffällig ist dies bei den Sukkulenten mit ihren großen Vakuolen, die Kompartimentierung ist jedoch nicht auf die Sukkulenten beschränkt. Das Cytoplasma und die Chloroplasten enthalten somit nur eine relativ geringe Konzentration an Salzionen. Der Ionentransport in die Vakuolen erfolgt durch Membran-ATPasen. Der dadurch entstehende Unterschied im osmotischen Potential zwischen Vakuole und Cytoplasma wird durch compatible solutes (siehe unten) ausgeglichen
Wirkungen des Salzes auf die Pflanze
Die Wirkungen des Salzes werden auf drei Ebenen sichtbar. Bei Nichthalophyten führt dies zu Schädigungen, während die Halophyten durch unterschiedliche Mechanismen angepasst sind.
- Osmotische Effekte erschweren die Wasseraufnahme aus dem salzigen Medium (physiologische Trockenheit).
- Durch den Überschuss an Natrium kommt es zu einem Ionenungleichgewicht, da die lebensnotwendigen Ionen Kalium, Calcium und Stickstoff von nicht angepassten Pflanzen nicht mehr in ausreichenden Ausmaß aufgenommen werden können. Es kommt zu einem durch Natrium induzierten Kaliummangel.
- Salzionen haben auch spezifische Effekte auf verschiedene Stoffwechselbereiche. Beispiele sind die Hemmung des Proteinstoffwechsels, eine Erhöhung der Aktivität des Pentosephosphat-Zyklus und eine Verminderung der Glykolyse.
Unter den Bodensalzen weist Natriumchlorid die größte Toxizität und an den meisten Standorten auch den größten Anteil auf; darauf folgen, nach Stärke der Giftwirkung, Calciumchlorid, Magnesiumchlorid, Natrium- und Magnesiumsulfat.
Auf dem Bild:
Halophyten (Salzpflanzen) wie der Europäische Meersenf (Cakile maritima) und der Strandhafer (Ammophila arenaria) sind an salzhaltige Standorte, wie hier auf der Nordseeinsel Spiekeroog, angepasst.
Funktionen und Nutzung von Halophyten
Halophyten wie der Queller oder die Sode gehören zu den Pionierpflanzen und können zur Sedimentation sowie zur Entstehung von Salzwiesen in Meeresregionen beitragen. Während die Wurzeln den Boden festhalten, sorgt der obere Teil der Pflanze für eine Beruhigung der Wasserbewegung. Das vom Meerwasser mitgeführte Salz und andere Sedimente lagern sich zwischen den Wurzeln und einzelnen Pflanzenteilen ab. Darauf sinken diese in den Boden ein. Eine langfristige Wiederholung dieses Vorgangs kann dazu führen, dass sich der Boden immer weiter anhebt und über den Wasserspiegel steigt. Solche Erhebungen bieten nun wiederum der weniger salzresistenten Flora eine Lebensgrundlage. Diese verlandungsfördernde Wirkung wird durch die Anlage von „Halophytenbeeten“ gelegentlich genutzt. Die wellen- und windberuhigende Wirkung eignet sich außerdem weltweit als natürlicher Puffer und Schutzfunktion gegen Sturmfluten und Tsunamis (Aufforstung des Mangrovenbestandes in Vietnam, Thailand und Indien).
Einen weiteren nützlichen Vorteil bildet die Verhinderung von Abrasion an Stränden und Küsten. Die weiten Wurzelausläufer einiger Pflanzen, zum Beispiel Gewöhnlicher Strandhafer (Ammophila arenaria), desgleichen Strandroggen (Elymus arenarius), verankern sich über weite Strecken im Boden und festigen diesen. Damit wird präventiv eine Abtragung von Material durch das Wasser verhindert. An gefährdeten Inseln oder Buchten kann somit das Vordringen des Wassers verhindert oder sogar gestoppt werden.
Das staatliche Forschungszentrum Desert Research Center (DRC) in Kairo sucht nach Methoden, mit denen ägyptische Wüstengebiete nutzbar gemacht werden können. Die Maryout Experimental Station umfasst mit ungefähr vier Hektar die größte Versuchsstationen des DRC und untersucht seit 1968 das Verhalten von Tieren und Kulturpflanzen bei extremen Bedingungen. Erforscht wird hauptsächlich, wie gut Ziegen, Schafe, Kaninchen oder Kamele Futter aus Pflanzen vertragen, die auch bei hohen Salzkonzentrationen im Boden wachsen. Man testete bisher die Reaktionen der Nutztiere auf zwei Salzpflanzenarten als Nahrungsgrundlage, wobei Forscher das Wachstum, die Fruchtbarkeit und die Fleischqualität mit Versuchstieren normaler Futterverhältnisse verglichen. Atriplex halimus (Salzbusch) und Acacia saligna (Salzakazie) schränkten bei dem Experiment ausschließlich das Wachstum ein, was durch fettreiche Nahrung ausgeglichen werden kann. Sie dienen heute als Nahrungsquelle an besonders trockenen Orten. Halophyten werden auch zur Stabilisierung der Felder verwendet, ohne das Wachstum von Getreide einzuschränken. Inzwischen konnte durch den gemischten Anbau mit Salzpflanzen die nutzbare Fläche in Wüsten stark vergrößert werden.
Auf dem Bild:
Queller im International Center for Biosaline Agriculture.
Viele Salzwiesenpflanzen finden auch Verwendung als Nahrungsmittel in den Küchen der nördlichen Länder. Essbare Salzpflanzen, wie zum Beispiel Strandwegerich oder Stranddreizack als Röhrkohl, verleihen Speisen einen delikaten, salzig bis pfeffrigen Geschmack, dienen dem Körper als natürliche Iodquelle.
Auch der Queller ist essbar und wird auch Meeresspargel oder Salicorn genannt. Er ist ein wertvolles Wildgemüse von leicht pfeffrigem Geschmack und kann als Rohkost, blanchiert, als Einlage in gesalzenem Essig oder als Beilage gegessen werden. Die junge Pflanze wird von Hand ab Mai geerntet. Es werden nur die Spitzen verarbeitet.
Da die Wurzeln sowohl ins Meerwasser als auch in die salinenumschließende Tonerde reichen, enthält der Meeresspargel Nährstoffe und Mineralstoffe des Meeres und der vermittelnden Tonerde, beispielsweise Natrium, Kalium, Magnesium, Schwefel, Kalzium, Phosphor, Eisen, Zink, Mangan, Kupfer. Ebenso ist er eine natürliche Iodquelle mit hoher biologischer Wertigkeit.
Früher fand die Asche des Quellers bei der Seifenherstellung Verwendung. In der Glasbläserei wurde sie zur Herabsetzung des Schmelzpunktes dem Glas beigesetzt, daher auch der Name Glasschmelz.
Meerwasser-Aquaristik
- Das tropische Meerwasser-Aquarium
- Korallen-Riffe
- Der Indo-Pazifik
- Das Rote Meer
- Karibik & Golf von Mexiko
- Nesseltiere (Cnidaria)
- Quallen und Hydrozoen
- Blumentiere (Anthozoa)
- Steinkorallen im Portrait
- Weich- & Lederkorallen
- Hornkorallen im Portrait
- Anemonen & Zylinderrosen
- Krusten- & Scheibenanemonen
- Azooxanthellate Korallen
- Korallen-Zucht
- Fische (Meerwasser)
- Barschartige & Barschverwandte
- Doktor- & Kaninchenfische
- Kaiser- & Falterfische
- Riffbarsche
- Fahnenbarsche
- Drachenköpfe
- Anemonenfische
- Schleimfische
- Grundeln
- Lippfische
- Korallenwächter
- Seenadelartige
- Seepferdchen & Co
- Leierfische
- Schnepfenfische
- Aalartige
- Muränen
- Röhrenaale
- Knorpelfische
- Haie
- Rochen
- Weitere Meerwasserfische
- Wirbellose (Meerwasser)
- Garnelen
- Krebse
- Meeresschnecken
- Muscheln
- Stachelhäuter
- Seesterne, Schlangensterne & Co
- Seeigel
- Seegurken
- Röhrenwürmer & andere Vielborster
- Schwämme
- Seescheiden
- Weitere Wirbellose (MW)
- Mangroven & Makroalgen
- Aquaristik der Gemäßigten Meere
- Mittelmeer, Nordsee & Atlantik
- Mittelmeer-Aquaristik
- Mittelmeer-Fische im Portrait
- Blumentiere des Mittelmeeres
- Wirbellose des Mittelmeeres
- Nordsee-Aquaristik
- Algen, Tange & Pflanzen
der gemäßigten Meere